

CLIC-CLO MICROSCREEN

TECHNICAL DATASHEET

Ideal tertiary polishing when further solids and/or Biological Oxygen Demand (BOD $_5$) needs to be removed. The unique design of the drum filter maximises the surface area of filtration to achieve high removal efficiency with extremely low operating costs.

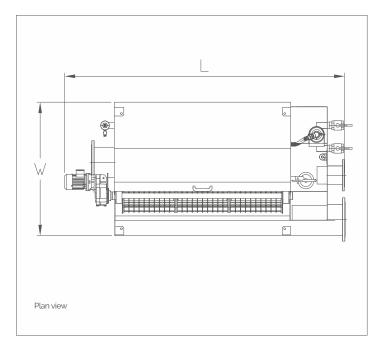
KEY FEATURES:

- Fully automated system
- Integrated pumped backwash system
- · Simple operation and low maintenance
- Easy installation or retrofit in to existing works
- Typical power consumption for 20 l/sec <0.3kw/hr
- Choice of Form 2 or Form 4 control panels
- · Above ground installation stainless steel
- · Below ground installation in a precast concrete channel
- · Skid mounted option
- The process can be used to assist with achieving Fe & P compliance

CARTRIDGE CLOTH FILTRATION SYSTEM:

The cartridge based screen cloth can be easily fitted within minutes, removing the need for time-consuming maintenance activities.

- · One-size cartridge fits all models
- Easy to change on site without the need for a service call
- Polyamide or stainless steel cloths can be fitted
- From 20 microns upwards to provide flexibility on flow
- · Use of backwash wastewater to clean the cloth



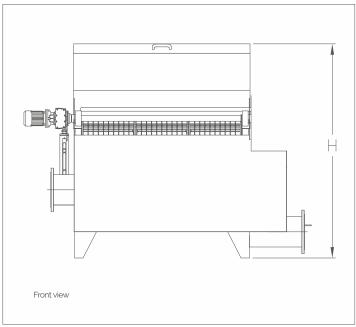

Model	Dimensions (mm)			Effective Filter Area	Flow rate @ 40mg/ltr with 40 micron cloth	Weight (Kg)		Inlet/Outlet (DN Flange)	Avail- able for
	L	W	Н			Empty	Operational		hire
1FBO	1367	1029	1321	0.420	5 l/s	250	730	DN150	
2FBO/5BMF10	1958	1166	1420	1.100	10 l/s	280	1085	DN200	/
3FBO/10BMF10	2716	1398	1655	2.400	26.3 l/s	570	2250	DN250	/
4FBO	3218	1727	1775	4.200	52.5 l/s	750	3810	DN300	/
5FBO	3828	1746	1963	6.200	65.6 l/s	1200	7300	DN400	
6FBO	4815	2145	2229	8.700	141.4 l/s	2200	15000	DN500	

Table Example:

Influent max. in-flow capacity with TSS @ 40mg/lt (95%ile)

Filter Type	Capacity of Filter (l/s) at various apertures (μΜ)							
Theor Type	60	40	30	20				
1FBO	8	5	4	2.5				
2FBO	20	10	10	7				
3FBO	45	26.3	21	14				
4FBO	87	52,5	42	27				
5FBO	105	65.6	52	35				
6FBO	205	141.4	115	75				

Disclaimer